(3p - 3q + r)(3p - q - 3r)
(6p - 3q - 3r)(3p - q - 4r)
(3p - q + 3r)(3p + q - 3r)
(3q - p + 3r)(3q - p + 3r)
Correct answer is C
\(9p^{2} - q^{2} + 6qr - 9r^{2}\)
= \(9p^{2} - (q^{2} - 6qr + 9r^{2})\)
= \(9p^{2} - (q^{2} - 3qr - 3qr + 9r^{2})\)
= \(9p^{2} - (q(q - 3r) - 3r(q - 3r))\)
= \(9p^{2} - (q - 3r)^{2}\)
= \((3p + (q - 3r))(3p - (q - 3r))\)
= \((3p + q - 3r)(3p - q + 3r)\)
In the diagram, TS is a tangent to the circle at S. |PR| and < PQR = 177o. Calculate < PST....
Simplify \(\frac{m}{n} + \frac{(m - 1)}{5n} = \frac{(m - 2)}{10n}\) where n \(\neq\) 0...
Simplify: \(\sqrt{108} + \sqrt{125} - \sqrt{75}\)...
Simplify:(\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2...
Find the sum of the first 18 terms of the progression 3, 6, 12...... ...
What is the answer when 2434\(_6\) is divided by 42\(_6\)? ...