Two binary operations \(\ast\) and \(\oplus\) are defined as m \(\ast\) n = mn - n - 1 and m \(\oplus\) n = mn + n - 2 for all real numbers m, n.
Find the value of 3 \(\oplus\) (4 \(\ast\) 50)
60
57
54
42
Correct answer is C
m \(\ast\) n = mn - n - 1, m \(\oplus\) n = mn + n - 2
3 \(\oplus\) (4 \(\ast\) 5) = 3 \(\oplus\) (4 x 5 - 5 - 1) = 3 \(\oplus\) 14
3 \(\oplus\) 14 = 3 x 14 + 14 - 2
= 54