4 - log3
\(\frac{4}{log_3 x}\)
\(\frac{4}{x}\)
\(\pm\) \(\frac{9}{x}\)
Correct answer is D
2log3y + log3x2 = 4
log3y2 + log3x2 = 4
∴ log3 (x2y2) = log381(correct all to base 4)
x2y2 = 81
∴ xy = \(\pm\)9
∴ y = \(\pm\)\(\frac{9}{x}\)
Simplify \((25)^{\frac{-1}{2}} \times (27)^{\frac{1}{3}} + (121)^{\frac{-1}{2}} \times (62...
PQRS is a rhombus. If PR\(^2\) + QS\(^2\) = kPQ\(^2\), determine k....
In the diagram, O is a circle centre of the circle PQRS and < PSR = 86o. If < PQR = xo, find x...
What is the place value of 9 in the number 3.0492? ...
Solve the equation 5x2 - 4x - 1 = 0...
If \(\frac{3^{(1-n)}}{9^{-2n}}=\frac{1}{9}\) find n...
Simplify \(4 - \frac{1}{2 - \sqrt{3}}\)...
If 2257 is the result of subtracting 4577 from 7056 in base n, find n ...