\(\begin{array}{c|c} \text{Class Interval} & 1 - 5 & 6 - 10 & 11 - 15 & 16 - 20 & 21 - 25 \\ \hline Frequency & 6 & 15 & 20 & 7 & 2\end{array}\)
Estimate the median of the frequency distribution above

A.

10\(\frac{1}{2}\)

B.

11\(\frac{1}{2}\)

C.

12

D.

13

Correct answer is C

Median = L + [\(\frac{\frac{N}{2} - f}{fm}\)]h

N = Sum of frequencies

L = lower class boundary of median class

f = sum of all frequencies below L

fm = frequency of modal class and

h = class width of median class

Median = 11 + [\(\frac{\frac{50}{2} - 21}{20}\)]5

= 11 + (\(\frac{25 - 21}{20}\))5

= 11 + (\(\frac{(4)}{20}\))

11 + 1 = 12