Make K the subject of the relation T = \(\sqrt{\frac{TK - H}{K - H}}\)

A.

K = \(\frac{H(T^2 - 1)}{T^2 - T}\)

B.

K = \(\frac{HT}{(T - 1)^2}\)

C.

K = \(\frac{H(T^2 + 1)}{T}\)

D.

K = \(\frac{H(T - 1)}{T}\)

Correct answer is A

T = \(\sqrt{\frac{TK - H}{K - H}}\)

Taking the square of both sides, give

T2 = \(\frac{TK - H}{K - H}\)

T2(K - H) = TK - H

T2K - T2H = TK - H

T2K - TK = T2H - H

K(T2 - T) = H(T2 - 1)

K = \(\frac{H(T^2 - 1)}{T^2 - T}\)