If x - 1 and x + 1 are both factors of the equation x\(^3\) + px\(^2\) + qx + 6 = 0, evaluate p and q

A.

-6, -1

B.

6, 1

C.

1, -1

D.

6, -6

Correct answer is A

\(x^{3} + px^{2} + qx + 6 = 0\)

f(x - 1) = 0; f(1) = 0.

\(1^{3} + p(1^{2}) + q(1) + 6 = 0 \implies p + q = -7 ... (1)\)

f(x + 1) = 0; f(-1) = 0.

\((-1)^{3} + p(-1^{2}) + q(-1) + 6 = 0 \implies p - q = -5 ... (2)\)

Subtract (2) from (1).

\(2q = -2 \implies q = -1\)

\(p - (-1) = -5 \implies p = -5 - 1 = -6\)

\((p, q) = (-6, -1)\)