The value of y for which \(\frac{1}{5}y + \frac{1}{5} < \frac{1}{2}y + \frac{2}{5}\) is

A.

\(y > \frac{2}{3}\)

B.

\(y < \frac{2}{3}\)

C.

\(y > -\frac{2}{3}\)

D.

\(y < -\frac{2}{3}\)

Correct answer is C

\(\frac{1}{5}y + \frac{1}{5} < \frac{1}{2}y + \frac{2}{5}\)

Collect like terms

\(\frac{y}{5} - \frac{y}{2} < \frac{2}{5} - \frac{1}{5}\)

\(\frac{2y - 5y}{10} < \frac{2 - 1}{5}\)

\(\frac{-3y}{10} < \frac{1}{5}\)

\(y > \frac{-2}{3}\)