12\(\frac{8}{5}\)
15
10
28\(\frac{8}{5}\)
Correct answer is C
P \(\propto\) mu, p \(\propto \frac{1}{q}\)
p = muk ................ (1)
p = \(\frac{1}{q}k\).... (2)
Combining (1) and (2), we get
P = \(\frac{mu}{q}k\)
4 = \(\frac{m \times u}{1}k\)
giving k = \(\frac{4}{6} = \frac{2}{3}\)
So, P = \(\frac{mu}{q} \times \frac{2}{3} = \frac{2mu}{3q}\)
Hence, P = \(\frac{2 \times 6 \times 4}{3 \times \frac{8}{5}}\)
P = \(\frac{2 \times 6 \times 4 \times 5}{3 \times 8}\)
p = 10