\(P = \frac{Q}{12R}\)
\(P = \frac{12Q}{R}\)
\(P = 12QR\)
\(P = \frac{12}{QR}\)
Correct answer is B
\(P \propto \frac{Q}{R}\)
\(P = K \frac{Q}{R}\)
When Q = 36, R = 16, P = 27
Then substitute into the equation
\(27 = K \frac{36}{16}\)
\(K = \frac{27 \times 16}{36}\)
\(K = 12\)
So the equation connecting P, Q and R is
\(P = \frac{12Q}{R}\)
If cos x = \(\sqrt{\frac{a}{b}}\) find cosec x...
If \(tan x = \frac{1}{\sqrt{3}}\), find cos x - sin x such that \(0^o \leq x \leq 90^o\)...
Evaluate \(\frac{3\frac{1}{4} \times 1\frac{3}{5}}{11\frac{1}{3} - 5 \frac{1}{3}}\)...
Find the smallest value of k such that 2\(^2\) x 3\(^3\) x 5 x k is a perfect square....
Find the sum of the roots of the equation 2x2 + 3x - 9 = 0...