\(\frac{\pi h}{3} (2R + r)\)
\(2R + r + \frac{\pi h}{3}\)
\(\frac{\pi h}{3} (2R^2 + r + 2r)\)
\(\frac{2R^2}{3} \pi h\)
Correct answer is A
\(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\)
\(V = \frac{\pi R^2 h}{3} + \frac{\pi Rr h}{3} + \frac{\pi r^2 h}{3}\)
\(\frac{\mathrm d V}{\mathrm d R} = \frac{2 \pi R h}{3} + \frac{\pi r h}{3}\)
= \(\frac{\pi}{3} (2R + r)\)
Evaluate \(\frac{(2.813 \times 10^{-3} \times 1.063)}{(5.637 \times 10^{-2})}\) reduc...
Simplify the expression: \(Log_{4}16\) + \(Log_{3}27\) + \(Log_{8}4096\) ...
Simplify \(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)...
Simplify; 3x - (p - x) - (r - p)...
Find the radius of a sphere whose surface area is 154 cm\(^2\)? ...
If the exterior angles of quadrilateral are yo, (y + 5)o, (y + 10)o and (y + 25)o, find y...