\(\frac{3}{a+b}\)
\(\frac{a-3b}{a^2-b^2}\)
\(\frac{3a-b}{a^2 – b^2}\)
\(\frac{a-3b}{a^2+b^2}\)
Correct answer is B
Simplify \(\frac{2}{a+b}-\frac{1}{a-b}; \frac{2(a-b)-1(a+b)}{(a+b)(a-b)}\)
= \(\frac{2a-2b-a-b}{(a+b)(a-b)}\)
= \(\frac{a-3b}{a^2 - ab + ab - b^2}\)
= \(\frac{a-3b}{a^2-b^2}\)
Express the square root of 0.000144 in the standard form ...
Factorize completely 81a\(^4\) - 16b\(^4\)...
\(\begin{array}{c|c} Numbers & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline Frequency & 18 & 22 & 20 & 16 & 10...
If PN is perpendicular to QR, find the value of tan x. ...
Simplify without using tables \(\frac{log_26}{log_28}\) - \(\frac{log_23}{2log_2\frac{1}{2}}\)...