\(\frac{3}{a+b}\)
\(\frac{a-3b}{a^2-b^2}\)
\(\frac{3a-b}{a^2 – b^2}\)
\(\frac{a-3b}{a^2+b^2}\)
Correct answer is B
Simplify \(\frac{2}{a+b}-\frac{1}{a-b}; \frac{2(a-b)-1(a+b)}{(a+b)(a-b)}\)
= \(\frac{2a-2b-a-b}{(a+b)(a-b)}\)
= \(\frac{a-3b}{a^2 - ab + ab - b^2}\)
= \(\frac{a-3b}{a^2-b^2}\)
Simplify \(\frac{8^{\frac{2}{3}}*27^{\frac{-1}{3}}}{64^{\frac{1}{3}}}\)...
Find the volume of the figure ...
The identity element with respect to the multiplication shown in the diagram below is \(\begin{...
A fair die is rolled once. What is the probability of obtaining 4 or 6? ...
y is inversely proportional to x and y = 4 when x = 1/2. Find x when y = 10. ...
Let J be the set of positive integers, If H = {x: x∈J, x\(^2\) < 3 and x ≠ 0}, then...