\(\frac{rk^2 + p}{m^2}\)
\(\frac{rk^2+pm^2}{m^2}\)
\(\frac{rk^2-p}{m^2}\)
\(\frac{rk^2-p^2}{m^2}\)
Correct answer is B
\(k = m\sqrt{\frac{t - p}{r}}\)
\(\frac{k}{m} = \sqrt{\frac{t - p}{r}}\)
\((\frac{k}{m})^2 = \frac{t - p}{r}\)
\(rk^2 = m^2 (t - p)\)
\(\therefore m^2 t = rk^2 + m^2 p\)
\(t = \frac{rk^2 + m^2 p}{m^2}\)