Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

346.

An amount of N550,000.00 was realized when a principal, x was saved at 2% simple interest for 5 years. Find the value of x

A.

N470,000.00

B.

N480,000.00

C.

N490,000.00

D.

N500,000.00

Correct answer is D

S.I = \(\frac{x \times 2 \times 5}{100}\) = 0.1x

A = P + S.I

550,000 = x + 0.1x

\(\frac{550,000}{1.1} = \frac{1.1x}{1.1}\)

x = N500,000

347.

If 101\(_{\text{two}}\) + 12y = 3.3\(_{\text{five}}\). Find the value of y

A.

8

B.

7

C.

6

D.

5

Correct answer is C

012 + 01 = 01

101\(_2\) + 12\(_y\) = 2.3\(_5\)

1 x 2\(^o\) + 0 x 2\(^o\) + 1 x2\(^2\) + 1 x y\(^o\) + 2 x y\(^1\) = 3 x 5\(^o\) + 3 x 5\(^1\)

1 + 4 + 1 + 2y = 3 + 15

6 + 2y = 18 

2y = 18 - 6

\(\frac{2y}{2} = \frac{12}{2}\)

y = 6

348.

Express 1 + 2 log10\(^3\) in the form log10\(^9\) 

A.

log10\(^{90}\)

B.

log10\(^{19}\)

C.

log10\(^{9}\)

D.

log10\(^{6}\)

Correct answer is A

1 + 2log\(_{10}^3\)

= log\(_{10}^{10} + log_{10}^{3^2}\)

= log\(_{10}^{10} + log_{10}^{9}\)

= log\(_{10}^{10 \times 90}\) = log\(_{10}^{90}\)

349.

Simplify; [(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{4}}\)]\(^{\frac{1}{3}}\)

A.

\(\frac{3}{4}\)

B.

\(\frac{9}{16}\)

C.

\(\frac{3}{8}\)

D.

\(\frac{1}{4}\)

Correct answer is C

[(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{4}}\)]\(^{\frac{1}{3}}\)

= [(\(\frac{9}{16}\))]\(^{\frac{3}{2}}\) x [(\(\frac{1}{16}\))\(^{\frac{3}{4}}\)]\(^{\frac{1}{3}}\)

= [(\(\sqrt{\frac{9}{10}}\))\(^3\) x (4\(\sqrt{\frac{1}{16}})^3\)]\(^{\frac{1}{3}}\)

= [(\(\frac{3}{4})^3 \times (\frac{1}{2})^3\)]\(^\frac{1}{3}\)

(\(\frac{27}{64} \times \frac{1}{8}\))\(^\frac{1}{3}\) = \({3}\sqrt{\frac{27}{64} \times \frac{1}{8}}\)

= \(\frac{3}{4} \times \frac{1}{2}\) = \(\frac{3}{8}\) 

350.

If  X = {x : x < 7} and Y = {y:y is a factor of 24} are subsets of \(\mu\) = {1, 2, 3...10} find X \(\cap\) Y.

A.

{2, 3, 4, 6}

B.

{1, 2, 3, 4, 6}

C.

{2, 3, 4, 6, 8}

D.

{1, 2, 3, 4, 6, 8}

Correct answer is B

\(\mu\) = {1, 2, 3, 4..., 10}

X = {1, 2, 3, 4, 5, 6}

Y = {1, 2, 3, 4, 6, 8}

Therefore;

X \(\cap\) Y = {1, 2, 3, 4, 6}