Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,336.

X is a point due east of point Y on a coast: Z is another point on the coast but 6√3km due south of y.

If the distance XZ is 12Km. Calculate the bearing of Z from X

A.

240o

B.

210o

C.

150o

D.

60o

Correct answer is B

Using sinØ = \(\frac{6√3}{12}\) →  \(\frac{√3}{2}\)

sinØ = \(\frac{√3}{2}\) or 60°

The bearing of  Z from X = [270 - 60]° → 210°

2,337.

If in the diagram, FG is parallel to KM, find the value of x

A.

75o

B.

95o

C.

105o

D.

125o

Correct answer is B

No explanation has been provided for this answer.

2,338.

Determine the distance on the earth's surface between two town P (lat 60°N, Long 20°E) and Q(Lat 60°N, Long 25°W) (Radius of the earth = 6400km)

A.

\(\frac{800\pi}{9}\)km

B.

\(\frac{800\sqrt{3\pi}}{9}\)km

C.

800\(\pi\) km

D.

800\(\sqrt{3\pi}\) km

Correct answer is C

Angular difference (\(\theta\))= 25° + 20° = 45°

\(\alpha\) = common latitude = 60°

\(S = \frac{\theta}{360°} \times 2\pi R \cos \alpha\)

\(S = \frac{45°}{360°} \times 2 \pi \times 6400 \times \cos 60°\)

= \(\frac{6400\pi}{8} = 800\pi km\)

2,339.

If the angles of quadrilateral are (p + 10)°, (2p - 30)°, (3p + 20)° and 4p°, find p.

A.

63

B.

40

C.

36

D.

28

Correct answer is C

The sum of angles in a quadrilateral = 360°

\(\therefore (p + 10) + (2p - 30) + (3p + 20) + 4p = 360\)

\(10p = 360° \implies p = \frac{360}{10} = 36°\)

2,340.

p = \(\begin{vmatrix} x & 3 & 0 \\ 2 & y & 3\\ 4 & 2 & 4 \end{vmatrix}\)

Q = \(\begin{vmatrix} x & 2 & z \\ 3 & y & 2\\ 0 & 3 & z \end{vmatrix}\)
PQ is equivalent to

A.

PPT

B.

pp-1

C.

qp

D.

pp

Correct answer is A

p = \(\begin{vmatrix} 0 & 3 & 0 \\ 2 & 1 & 3\\ 4 & 2 & 2 \end{vmatrix}\)

Q = \(\begin{vmatrix} 0 & 2 & 4 \\ 3 & 1 & 2\\ 0 & 3 & 2 \end{vmatrix}\) = pT

pq = ppT