Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,281.

Find the total area of the surface of a solid cylinder whose base radius is 4cm and height is 5cm

A.

56\(\pi\) cm2

B.

72\(\pi\) cm2

C.

96\(\pi\) cm2

D.

192\(\pi\) cm2

Correct answer is B

The total surface area of a cylinder = \(2\pi r (r + h)\)

= \(2 \pi (4) (4 + 5)\)

= \(8 \pi (9) = 72 \pi cm^{2}\)

2,282.

From a point Z, 60 m north of X, a man walks 60√3m eastwards to another point Y. Find the bearing of Y from X.

A.

0.30o

B.

045o

C.

060o

D.

090o

Correct answer is C

tan \(\theta\) = \(\frac{60\sqrt{3}}{60}\) = \(\sqrt{3}\)

\(\theta\) = tan \(\frac{1}{3}\) = 60o

Bearing of y from x = 060o

2,283.

If cos x = \(\sqrt{\frac{a}{b}}\) find cosec x

A.

\(\frac{b}{\sqrt{b - a}}\)

B.

\(\sqrt{\frac{b}{a}}\)

C.

\(\sqrt{\frac{b}{b - a}}\)

D.

\(\sqrt{\frac{b - a}{a}}\)

Correct answer is C

cosx = \(\sqrt{\frac{a}{b}}\)

y2 + \(\sqrt{(a)^2}\) = \(\sqrt{(b)^2}\) by pythagoras

y2 = b - a

∴ y = b - a

cosec x = \(\frac{1}{sin x}\) = \(\frac{1}{y}\)

\(\frac{b}{y}\) = \(\frac{\sqrt{b}}{\sqrt{b - a}}\)

= \(\sqrt{\frac{b}{b - a}}\)

2,284.

Simplify \(\cos^{2} x (\sec^{2} x + \sec^{2} x \tan^{2} x)\)

A.

tan x

B.

tanx secx

C.

\(\sec^2 x\)

D.

cosec2x

Correct answer is C

\(\cos^{2} x (\sec^{2} x + \sec^{2} x \tan^{2} x)\)

= \(\cos^{2} x \sec^{2} x + \cos^{2} x \sec^{2} x \tan^{2} x\)

= \(1 + \tan^{2} x\)

= \(1 + \frac{\sin^{2} x}{\cos^{2} x}\)

= \(\frac{\cos^{2} x + \sin^{2} x}{\cos^{2} x}\)

= \(\frac{1}{\cos^{2} x} = \sec^{2} x\)

2,285.

A flagstaff stands on the top of a vertical tower. A man standing 60 m away from the tower observes that the angles of elevation of the top and bottom of the flagstaff are 64o and 62o respectively. Find the length of the flagstaff.

A.

60 (tan 62o - tan 64o)

B.

60 (cot 64o - cot 62o)

C.

60 (cot 62o - cot 64o)

D.

60 (tan 64o - tan 62o)

Correct answer is D

\(\frac{BC}{60}\) = \(\frac{tan 62}{1}\)

BC = 60 tan 62

\(\frac{AC}{60}\) = \(\frac{tan 62}{1}\)

AC = 60 tan 64

AB = AC - BC

= 60(tan 64o - tan 62o)