How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Simplify \(\frac{324 - 4x^2}{2x + 18}\)
2(x - 9)
2(9 + x)
81 - x2
-2(x - 9)
Correct answer is D
\(\frac{324 - 4x^2}{2x + 18}\) = \(\frac{18^2 - (2x)^2}{2x + 18}\)
= \(\frac{(18 - 2x)(18 + 2x)}{(2x + 18)}\)
18 - 2x = 2(9 - x)
or -2(x - 9)
Solve for a positive number x such that \(2^{(x^3 - x^2 - 2x)} = 1\)
4
3
2
1
Correct answer is C
\(2^{(x^3 - x^2 - 2x)} = 1\)
\(x^3 - x^2 - 2x = 0\)
\(x(x^2 - x - 2) = 0\)
\(x^2 - x - 2 = 0\)
\((x + 1)(x - 2) = 0\)
x = 2 is the positive answer.
If \(f(x) = 2x^2 - 5x + 3\), find f(x + 1).
2x2 - x
2x2 - x + 10
4x2 + 3x + 2
4x2 + 3x + 12
Correct answer is A
\(f(x) = 2x^2 - 5x + 3\)
\(f(x + 1) = 2(x + 1)^2 - 5(x + 1) + 3\)
= \(2(x^2 + 2x + 1) - 5x - 5 + 3\)
= \(2x^2 + 4x + 2 - 5x - 2\)
= \(2x^2 - x\)
N68.50
N63.00
N60.00
N52.00
Correct answer is B
C = a + kS. If C = 74, S = 20
C = 96, S = 30, C= ? S = 15
74 = a + 20k......(1)
96 = a + 30k......(2)
subtract equation (1) from (2)
96 = a + 30k
-
74 = a + 20k
--------------
22 = 10k
k = 2.2
find a
74 = a + 44
a = 30
C = 30 + 2.2S
when S = 15, C = 30 + 2.2 x 15
= 30 + 33
= N63
Make R the subject of the fomula S = \(\sqrt{\frac{2R + T}{2RT}}\)
R = \(\frac{T}{(TS^2 + 1)}\)
R = \(\frac{T}{2(TS^2 - 2)}\)
R = \(\frac{T}{2(TS^2 + 1)}\)
R = \(\frac{R}{2(TS^2 + 1)}\)
Correct answer is B
S = \(\sqrt{\frac{2R + T}{2RT}}\)
Squaring both sides,
\(S^{2} = \frac{2R + T}{2RT}\)
\(S^{2} (2RT) = 2R + T\)
\(2S^{2} RT - 2R = T\)
\(R = \frac{T}{2TS^{2} - 2}\)
= \(\frac{T}{2(TS^{2} - 1)}