How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If \(\log_{2} y = 3 - \log_{2} x^{\frac{3}{2}}\), find y when x = 4.
8
\(\sqrt{65}\)
4\(\sqrt{2}\)
3
1
Correct answer is E
\(\log_{2} y = 3 - \log_{2} x^{\frac{3}{2}}\)
When x = 4,
\(\log_{2} y = 3 - \log_{2} 4^{\frac{3}{2}}\)
\(\log_{2} y = 3 - \log_{2} 2^{3}\)
\(\log_{2} y = 3 - 3 \log_{2} 2 = 3 - 3 = 0\)
\(\log_{2} y = 0 \implies y = 2^{0} = 1\)
1.5cm
2.5cm
3cm
4cm
None of the above
Correct answer is A
Let XW = a, a :7
\(\frac{a}{5 - a}\) = \(\frac{3}{7}\)
7a = 15 - 3a
10a = 15
a = \(\frac{15}{10}\)
= \(\frac{3}{2}\)
= 1.5cm
Solve \(\frac{1}{x + 1}\) - \(\frac{1}{x + 3}\) = \(\frac{1}{4}\)
x = -1 or 3
x = 1 or 3
x = 1 or -5
x = -1 or 5
x = -1 or -3
Correct answer is C
\(\frac{1}{x + 1}\) - \(\frac{1}{x + 3}\) = \(\frac{1}{4}\)
\(\frac{x + 3 - x - 1}{(x + 1)(x + 3)}\) = \(\frac{1}{4}\)
\(\frac{2}{x^2 + 4x + 3}\) = \(\frac{1}{4}\)
= x2 + 4x + 3 = 8
x2 + 4x - 5 = 0
= (x - 1)(x + 5) = 0
x = 1 or -5
Simplify \(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{3 - 2}{\sqrt{3} + \sqrt{2}}\)
2\(\sqrt{2} - \sqrt{3}\)
3(\(\sqrt{6}\) - 1)
\(\sqrt{6}\) - 3
-\(\frac{1}{2}\)
\(\frac{-\sqrt{3}}{\sqrt{2} - \sqrt{2}}\)
Correct answer is B
\(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{3 - 2}{\sqrt{3} + \sqrt{2}}\)
\(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) = \(\frac{\sqrt{2}}{\sqrt{3}}\) - \(\frac{x}{\sqrt{2}}\)
\(\frac{\sqrt{3} + \sqrt{2}}{3 + \sqrt{2}}\) = \(\sqrt{6}\) + 2
\(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\) = \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
= 5 - 2\(\sqrt{6}\)
\(\sqrt{6}\) + 2 - (5 - 2 \(\sqrt{6}\)) = \(\sqrt{6}\) + 2 - 5 + 2\(\sqrt{6}\)
= 3\(\sqrt{6}\) - 3
= 3(\(\sqrt{6}\) - 1)
In one and a half hours, the minute hand of a clock rotates through an angle of
90o
180o
640o
450o
540o
Correct answer is E
1 hr = 60 mins, 60 mins = 360°
30 mins = \(\frac{360^o}{1}\) × \(\frac{30}{60}\)
= 180°
90 mins = 360° + 180°
= 540°