How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
60o
70o
120o
160o
Correct answer is C
Q1 = 50(alternate angle)
Q2 = 180o - 110o (straight line angle)
Q2 = 70
PQR = Q1 + Q2
= 50o + 70o
= 120o
260o
130o
100o
80o
Correct answer is B
Draw a line from P to Q
< PQS = < PRS (angle in the sam segment)
< PQS = 50o
Also, < QSR = < QPR(angles in the segment)
< QPR = xo
x + y + 5= = 180(angles in a triangle)
x + y = 180 - 50
x + y = 130o
112o
116o
122o
148o
Correct answer is C
PRQ = 90 - 58 = 32o(angle in a semi-circle)
Since PRS = 90o(radius angular to tangent)
QRS = 90 + 32
= 122o
In the diagram, \(\frac{PQ}{RS}\), find xo + yo
360o
300o
270o
180o
Correct answer is D
PQR = QRS = Y(alt. amgles)
PQR + x = 180o(angles on a straight line)
y + x = 180o
4\(\sqrt{5}\)cm
3\(\sqrt{7}\)cm
4\(\sqrt{6}\)cm
5\(\sqrt{6}\)cm
Correct answer is D
tan 6o = \(\frac{|PR|}{|QR|}\)
\(\sqrt{3} = \frac{|PR|}{5}\)
= |PR| = \(5 \sqrt{3}\)cm
sin 45 = \(\frac{|PR|}{|PS|}\)
\(\frac{1}{\sqrt{2}}\) = \(\frac{5 \sqrt{3}}{|PS|}\)
|PS| = \(5 \sqrt{3}\) x \(\sqrt{2}\)
= 5\(\sqrt{6}\)cm