Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

646.

Evaluate: \((64^{\frac{1}{2}} + 125^{\frac{1}{3}})^2\)

A.

121

B.

144

C.

169

D.

196

Correct answer is C

\([64^{\frac{1}{2}} + 125^{\frac{1}{3}}]^2\) = \([\sqrt{64} + \sqrt[3] {125}]^2\) 

\([8 + 5]^2\) = \([13]^2\)

= 169


 

647.

Simplify: \(\sqrt{108} + \sqrt{125} - \sqrt{75}\)

A.

\(\sqrt{3} + 5\sqrt{5}\)

B.

\(6 \sqrt{3} - 5 \sqrt{5}\)

C.

\(6 \sqrt{3} + \sqrt{2}\)

D.

\(6\sqrt{3} - \sqrt{2}\)

Correct answer is A

\(\sqrt{108} + \sqrt{125} - \sqrt{75}\)

= \(\sqrt{3 \times 36} + \sqrt{5 \times 25} - \sqrt{3 \times 25}\)

= \(6 \sqrt{3} + 5 \sqrt{5} - 5 \sqrt{3}\)

= \(\sqrt{3} + 5\sqrt{5}\)

648.

Add 54 \(_{eight}\) and 67\(_{eight}\) giving your answers in base eight

A.

111

B.

121

C.

123

D.

143

Correct answer is D

54 \(_{eight}\) and 67\(_{eight}\) = 1438

  Starting with normal addition, 4 + 7 gives 11

  (it is more than the base, 8) 8 goes in 11 just 1 time, remaining 3, the remainder will be written, and the 1 will be added to the sum of 5 and 6 which gives 12 altogether, 8 goes in 12 one time remaining 4, the remainder 4 was written and then the 1 that was the quotient was then written since nothing to add the 1 to.

  So answer is 143 in base eight

649.

From a point R, 300m north of P, a man walks eastwards to a place; Q which is 600m from P. Find the bearing of P from Q correct to the nearest degree

A.

026\(^o\)

B.

045\(^o\)

C.

210\(^o\)

D.

240\(^o\)

Correct answer is D

Cos θ = \(\frac{adj}{hyp}\)

  = \(\frac{300}{600}\)

  = 0.5

  θ = Cos - 10.5

  = 60

  ∠ RPQ = ∠ PQs

  So the bearing of P from Q is 180 + 60 = 240\(^o\)

  Answer is D

650.

Simplify 25\(\frac{1}{2}\) × 8\(\frac{-2}{3}\)

A.

1\(\frac{1}{4}\)

B.

2\(\frac{1}{4}\)

C.

6

D.

10

Correct answer is A

Using law of indices

25\(\frac{1}{2}\) × 8\(\frac{-2}{3}\)

  = √25 x (\(\sqrt[3]{8}\)) -2

  = 5 x 2-2

  = 5 x \(\frac{1}{2^2}\) =

 \(\frac{5}{4}\) = \(\frac{11}{4}\)

  Answer is A