How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
The perimeter of an isosceles right-angled triangle is 2 meters. Find the length of its longer side.
2 - \(\sqrt2\)
-4 + 3\(\sqrt2\)
It cannot be determined
-2 + 2\(\sqrt2\) m
Correct answer is D
Perimeter of a triangle = sum of all sides
⇒ \(P = y + x + x = 2\)
⇒ \(y + 2x = 2\)
⇒ \(y= 2 - 2x\)-----(i)
Using Pythagoras theorem
\(y^2 = x^2 + x^2\)
⇒ \(y^2 = 2x^2\)
⇒ \(y = \sqrt2x^2\)
⇒ \(y = x\sqrt2\)-----(ii)
Equate \(y\)
⇒ \(2 - 2x = x\sqrt2\)
Square both sides
⇒ \((2 -2x) ^2 = (x\sqrt2)^2\)
⇒ \(4 - 8x + 4x^2 = 2x^2\)
⇒ \(4 - 8x + 4x^2 - 2x^2 = 0\)
⇒ \(2x^2 - 8x + 4 = 0\)
⇒ \(x = \frac{-(-8)\pm\sqrt(-8)^2 - 4\times2\times4}{2\times2}\)
⇒ \(x = \frac{8\pm\sqrt32}{4}\)
⇒ \(x = \frac{8\pm4\sqrt2}{4}\)
⇒ \(x = 2\pm\sqrt2\)
⇒ \(x = 2 + \sqrt2\) or \(2 - \sqrt2\)
∴ \(x = 2 - \sqrt2\) (for \(x\) has to be less than its perimeter)
∴ \(y = 2 - 2x = 2 - 2(2 - \sqrt2) = -2 + 2 \sqrt2\)
∴ The length of the longer side = -2 + 2\(\sqrt2\)m
270 km
200 km
360 km
450 km
Correct answer is B
Speed = \(\frac{Distance}{Time}\)
⇒ Time = \(\frac{Distance}{Time}\)
Let D = distance between the two airports
∴ Time taken to get to the airport = \(\frac{D}{120}\) and Time taken to return =\( \frac{D}{150}\)
Since total time of flight= 3hours,
⇒ \(\frac{D}{120} + \frac{D}{150}\) = 3
⇒ \(\frac{15D + 12D}{1800}\) = 3
⇒ \(\frac{27D}{1800}\) = 3
⇒ \(\frac{3D}{200} = \frac{3}{1}\)
⇒ 3D = 200 x 3
∴ D =\(\frac{ 200\times3}{3}\)= 200km
PQRS is a cyclic quadrilateral. Find \(x\) + \(y\)
50
60
15
0
Correct answer is D
∠PQR + ∠PSR = 180o (opp. angles of cyclic quad. are supplementary)
⇒ 5\(x\) - \(y\) + 10 + (-2\(x\) + 3\(y\) + 145) = 180
⇒ 5\(x\) - \(y\) + 10 - 2\(x\) + 3\(y\) + 145 = 180
⇒ 3\(x\) + 2\(y\) + 155 = 180
⇒ 3\(x\) + 2\(y\) = 180 - 155
⇒ 3\(x\) + 2\(y\) = 25 ----- (i)
∠QPS + ∠QRS = 180o (opp. angles of cyclic quad. are supplementary)
⇒ -4\(x\) - 7\(y\) + 150 + (2\(x\) + 8\(y\) + 105) = 180
⇒ -4\(x\) - 7\(y\) + 75 + 2\(x\) + 8\(y\) + 180 = 180
⇒ -2\(x\) + \(y\) + 255 = 180
⇒ -2\(x\) + y = 180 - 255
⇒ -2\(x\) + \(y\) = -75 ------- (ii)
⇒ \(y\) = -75 + 2\(x\) -------- (iii)
Substitute (-75 + 2\(x\)) for \(y\) in equation (i)
⇒ 3\(x\) + 2(-75 + 2\(x\)) = 25
⇒ 3\(x\) - 150 + 4\(x\) = 25
⇒ 7\(x\) = 25 + 150
⇒ 7\(x\) = 175
⇒ \(x = \frac{175}{7} = 25\)
From equation (iii)
⇒ \(y\) = -75 + 2(25) = -75 + 50
⇒ \(y\) = -25
∴ \(x\) + \(y\) = 25 + (-25) = 0
10 cm and 15 cm
8 cm and 12 cm
6 cm and 9 cm
12 cm and 18 cm
Correct answer is A
Area of trapezium = \(\frac{1}{2}(a + b) h\)
⇒ \(\frac{1}{2} (a + b)\times 16 = 200\)
⇒ 8(a + b) = 200
⇒ a + b = \(\frac{200}{8}\) = 25 -----(i)
⇒ a : b = 2 : 3
⇒ \(\frac{a}{b} = \frac{2}{3}\)
⇒ 3a = 2b
⇒ a = \(\frac{2b}{3}\) -------(ii)
Substitute \(\frac{2b}{3}\) for a in equation (i)
⇒ \(\frac{2b}{3}\) + b = 25
\(\frac{5b}{3}\) = 25
⇒ b = 25 ÷ \(\frac{5}{3} = 25\times\frac{3}{5} = 15cm\)
From equation (ii)
⇒ a = \(\frac{2 \times 15}{3} = 2\times5 = 10cm\)
∴ Lengths of each parallel sides are 10cm and 15cm
380
340
360
240
Correct answer is C
Total number of students that scored at most 50 marks = 100 + 80 + 60 + 40 + 80 = 360