How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Find the inverse \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)
\(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & -\frac{5}{2} \end{vmatrix}\)
\(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)
\(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)
\(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)
Correct answer is B
Let A = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)
Then |A| = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\) = 20 - 18 = 2
Hence A-1 = \(\frac{1}{|A|}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)
= \(\frac{1}{2}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \\ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix}\)
= \(\begin{pmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{pmatrix}\)
\(\begin{vmatrix} 7 & 7 \\ 14 & 8 \end{vmatrix}\)
\(\begin{vmatrix} 14 & 8 \\ 7 & 7 \end{vmatrix}\)
\(\begin{vmatrix} 7 & 7 \\ 8 & 14 \end{vmatrix}\)
\(\begin{vmatrix} 8 & 14 \\ 7 & 7 \end{vmatrix}\)
Correct answer is B
2P + Q = 2\(\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 10 & 6 \\ 4 & 2 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)
= \(\begin{pmatrix} 14 & 8 \\ 7 & 7 \end{pmatrix}\)
If a binary operation * is defined by x * y = x + 2y, find 2 * (3 * 4)
24
16
14
26
Correct answer is A
x * y = x + 2y (given)
3 * 4 = 3 + 2(4) = 11
Hence, 2 * (3 * 4) = 2 * 11
= 2 + 2(11)
= 2 + 22
= 24
\(\frac{1 - 3n}{n + 1}\)
\(\frac{3n + 1}{n + 1}\)
\(\frac{3n + 1}{n - 1}\)
\(\frac{3n - 1}{n + 1}\)
Correct answer is B
Using Tn = \(\frac{3n + 1}{n + 1}\),
T1 = \(\frac{3(1) + 1}{(1) + 1} = \frac{4}{2}\)
T2 = \(\frac{3(2) + 1}{(2) + 1} = \frac{7}{3}\)
T3 = \(\frac{3(3) + 1}{(3) + 1} = \frac{10}{4}\)
x < 5
-2 < x < 3
-1 < x < 5
x < 1
Correct answer is C
|x - 2| < 3 implies -(x - 2) < 3 .... or .... +(x - 2) < 3 -x + 2 < 3 .... or .... x - 2 < 3 -x < 3 - 2 .... or .... x < 3 + 2 x > -1 .... or .... x < 5 combining the two inequalities results, we get; -1 < x < 5