Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,641.

The probability that a student passes a physics test is \(\frac{2}{3}\). If he takes three physics tests, what is the probability that he passes two of the tests?

A.

\(\frac{2}{27}\)

B.

\(\frac{3}{27}\)

C.

\(\frac{4}{27}\)

D.

\(\frac{5}{3}\)

Correct answer is C

Pass(P) = \(\frac{2}{3}\), Fail(F) = \(\frac{1}{3}\)

T = P.P.F ==> \(\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3}\) = \(\frac{4}{27}\)

2,642.

In how many ways can the letters of the word TOTALITY be arranged?

A.

6720

B.

6270

C.

6207

D.

6027

Correct answer is A

\(\frac{8!}{3!}\)

\(\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2\times 1}\)

==> 8 x 7 x 6 x 5 x 4 = 6720

2,643.

Evaluate n+1Cn-2 If n =15

A.

3630

B.

3360

C.

1120

D.

560

Correct answer is D

\(\frac{n + 1 (n - 2)}{(n + 1)!}\)

\(\frac{(n + 1) + (n - 2)!(n - 2)!}{(n + 1)!}\)

\(\frac{(n + 1)(n + 1 -1)(n+1-2)(n+1-3)!}{3!(n-2)!}\)

\(\frac{(n + 1)(n)(n-1)(n-2)!}{3!(n-2)!}\)

\(\frac{(n + 1)(n)(n-1)}{3!}\)

Since n = 15

\(\frac{(15 + 1)(15)(15-1)}{3!}\)

\(\frac{16 \times 15 \times 14}{3 \times 2 \times 1}\)

= 560

2,644.

Find the standard deviation of 2,3,8,10 and 12

A.

3.9

B.

4.9

C.

5.9

D.

6.9

Correct answer is A

\(\begin{array}{c|c} x & (x - \varkappa) & (x - \varkappa)^2 \\ \hline 2 & -5 & 25 \\ \hline 3 & -4 & 16 \\ \hline 8 & 1 & 1 \\ \hline 10 & 3 & 9 \\ \hline 12 & 5 & 25 \\ \hline & & 76
\end{array}\)

S.D = \(\sqrt{\frac{(x - \varkappa)^2}{n}}\)

S.D = \(\sqrt{\frac{76}{5}}\)

S.D = 3.9

2,645.

Find the range of 4,9,6,3,2,8,10 and 11

A.

11

B.

9

C.

8

D.

4

Correct answer is B

Range = Highest Number - Lowest Number

Range = 11 - 2 = 9