Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

256.

What number should be subtracted from the sum of 2 \(\frac{1}{6}\) and 2\(\frac{7}{12}\) to give 3\(\frac{1}{4}\)?

A.

\(\frac{1}{3}\)

B.

1\(\frac{1}{2}\)

C.

1\(\frac{1}{6}\)

D.

\(\frac{1}{2}\)

Correct answer is B

The sum of 2 \(\frac{1}{6}\) and 2\(\frac{7}{12}\)

= \(\frac{13}{6}\) + \(\frac{31}{12}\)

=  \(\frac{13 \times 2 + 31}{12}\) 

= \(\frac{26 + 31}{12}\)

= \(\frac{57}{12}\)

What should be subtracted from \(\frac{57}{12}\) to give 3\(\frac{1}{4}\)

\(\frac{57}{12}\) - y =  3\(\frac{1}{4}\)

: y = \(\frac{57}{12}\) - 3\(\frac{1}{4}\) = \(\frac{57}{12}\) - \(\frac{13}{4}\)

y = \(\frac{57 - 3 \times 13}{12}\) =  \(\frac{57 - 39}{12}\) 

y =  \(\frac{18}{12}\)

y =  \(\frac{3}{2}\) or 1\(\frac{1}{2}\) 

257.

Factorize 6pq-3rs-3ps+6qr

A.

3(r -p)(2q + s)

B.

3(p + r)( 2q - 2q - s)

C.

3(2q - s)(p + r)

D.

3(r - p)(s - 2q)

Correct answer is C

6pq-3rs-3ps+6qr = 3 (2pq - rs - ps + 2qr)

= 3 ({2pq + 2qr} {-ps - rs})

= 3 (2q{ p + r} -s{p + r})

= 3 ({2q - s}{p + r})

258.

if p = {-3<x<1} and Q = {-1<x<3}, where x is a real number, find P n Q.

A.

0

B.

-3, -2, -1, 0 and 1

C.

-2, -1 and 0

D.

-1, 0 and 1

Correct answer is A

p = {-3<x<1} = {-2,-1 and 0}

Q = {-1<x<3} = {0,1 and 2}

P n Q = {0} or  {-1<x<1}

259.

Find the 5th term of the sequence 2,5,10,17....?

A.

22

B.

24

C.

36

D.

26

Correct answer is D

Simply add odd number starting from '3' to the next number

2

2 + 3 = 5

5 + 5 = 10

10 + 7 = 17

17 + 9 = 26


The fifth term = 26

260.

If log\(_{10}\) 2 = m and log\(_{10}\) 3 = n, find log\(_{10}\) 24 in terms of m and n.

A.

3m + n

B.

m + 3n

C.

4mn

D.

3mn

Correct answer is A

log\(_{10}\) 24 = log\(_{10}\) 8 \(\times\) log\(_{10}\) 3

where log\(_{10}\) 8 = 3 log\(_{10}\) 2 = 3 \(\times\) m

and log\(_{10}\) 3 = n

: log\(_{10}\) 24 = 3m + n