How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Find the gradient of the line passing through the points P(1, 1) and Q(2, 5).
3
2
5
4
Correct answer is D
Let (x1, y1) = (1, 1) and (x2, y2)= (2, 5)
then gradient m of \(\bar{PQ}\) is
m = \(\frac{y_2 - y_1}{x_2 - x_1}\) = \(\frac{5 - 1}{2 - 1}\)
= \(\frac{4}{1}\)
= 4
1
0
√3
√2
Correct answer is D
Let D denote the distance between (\(\frac{1}{2}\), -\(\frac{1}{2}\)) then using
D = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
= \(\sqrt{(-{\frac{1}{2} - \frac{1}{2}})^2 + (-{\frac{1}{2} - \frac{1}{2}})^2}\)
= \(\sqrt{(-1)^2 + (-1)^2}\)
= \(\sqrt{1 + 1}\)
= √2
749\(\pi\)m2
700\(\pi\)m2
350\(\pi\)m2
98\(\pi\)m2
Correct answer is A
Total surface area of the cylindrical pipe = area of circular base + curved surface area
= \(\pi\)r\(^2\) + 2\(\pi\)rh
= \(\pi\) x 7\(^2\) + 2\(\pi\) x 7 x 50
= 49\(\pi\) + 700\(\pi\)
= 749\(\pi\)m\(^2\)
112o
102o
82o
52o
Correct answer is D
(x + 15)° + (2x - 45)° + (x + 10)° = (2n - 4)90°
when n = 4
x + 15° + 2x - 45° + x - 30° + x + 10° = (2 x 4 - 4) 90°
5x - 50° = (8 - 4)90°
5x - 50° = 4 x 90° = 360°
5x = 360° + 50°
5x = 410°
x = \(\frac{410^o}{5}\)
= 82°
Hence, the value of the least interior angle is (x - 30°)
= (82 - 30)°
= 52°
If P = \(\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}\) , what is P\(^-1\)
\(\begin{pmatrix} -{\frac{1}{5}} & -{\frac{3}{5}} \\ -{\frac{1}{5}} & -{\frac{2}{5}} \end{pmatrix}\)
\(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ {\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
\(\begin{pmatrix} -{\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
\(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)
Correct answer is D
P = \(\begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}\)
|P| = 2 - 1 x -3 = 5
P-1 = \(\frac{1}{5}\)\(\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}\)
= \(\begin{pmatrix} {\frac{1}{5}} & {\frac{3}{5}} \\ -{\frac{1}{5}} & {\frac{2}{5}} \end{pmatrix}\)