How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Simplify \(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)
\(\frac{3}{5}\)
\(\frac{2}{5}\)
\(\frac{2m - u}{5m + u}\)
\(\frac{m - 2u}{m + 5u}\)
Correct answer is A
\(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)
= \(\frac{2m - u + m - 2u)(2m - u - m + 2u)}{5(m + u)(m - u)}\)
= \(\frac{3(m - u)(m + u)}{5(m + u)(m - u)}\)
= \(\frac{3}{5}\)
Given that \(\sqrt{2} = 1.414\), find without using tables, the value of \(\frac{1}{\sqrt{2}}\)
0.141
0.301
0.667
0.707
Correct answer is D
\(\frac{1}{\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\) x \(\frac{\sqrt{2}}{\sqrt{2}}\)
= \(\frac{\sqrt{2}}{2}\)
= \(\frac{1.414}{2}\)
= 0.707
Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
5√3
6√3
8√3
18√3
Correct answer is B
\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)
=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)
= 3√3
Without using table, solve the equation 8x-2 = \(\frac{2}{25}\)
4
6
8
10
Correct answer is D
8x-2 = \(\frac{2}{25}\)
= 200x-2 = 2
= 100x-2 = 1
x-2 = \(\frac{1}{100}\)
x-2 = 10-2
x = 10
Evaluate \(\frac{log_5 (0.04)}{log_3 18 - log_3 2}\)
1
-1
\(\frac{2}{3}\)
-\(\frac{2}{3}\)
Correct answer is B
\(\frac{log_5 0.04}{log_3 18 - log_3 2}\)
= \(\frac{log_5 0.04}{log_3(\frac{18}{2})}\)
= \(\frac{log_5 0.04}{log_3 9}\)
= \(\frac{-2}{2}\)
= -1
Let log5 0.04 = x
5x = 0.04
x = \(\frac{4}{100}\) = 5-2
Let log3 9 = z
32 = 32
z = 3