How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If a = -3, b = 2, c = 4, evaluate \(\frac{a^3 - b^3 - c^{\frac{1}{2}}}{b - a - c}\)
37
\(\frac{-37}{5}\)
\(\frac{37}{5}\)
-37
Correct answer is D
\(\frac{a^{3} - b^{3} - c^{\frac{1}{2}}}{b - a - c} = \frac{(-3)^{3} - (2)^{3} - 4^{\frac{1}{2}}}{2 - (-3) - 4}\)
= \(\frac{-37}{1} = -37\)
If x varies inversely as the cube root of y and x = 1 when y = 8, find y when x = 3
\(\frac{1}{3}\)
\(\frac{2}{3}\)
\(\frac{8}{27}\)
\(\frac{4}{9}\)
Correct answer is C
\(x \propto \frac{1}{\sqrt[3]{y}} \implies x = \frac{k}{\sqrt[3]{y}}\)
When y = 8, x = 1
\(1 = \frac{k}{\sqrt[3]{8}} \implies 1 = \frac{k}{2}\)
\(k = 2\)
\(\therefore x = \frac{2}{\sqrt[3]{y}}\)
When x = 3,
\(3 = \frac{2}{\sqrt[3]{y}} \implies \sqrt[3]{y} = \frac{2}{3}\)
\(y = (\frac{2}{3})^{3} = \frac{8}{27}\)
\(\frac{a + b}{a - b}\)
\(\frac{1}{a^2 - b^2}\)
\(\frac{a - b}{a + b}\)
a2 - b2
Correct answer is B
\(\frac{1}{p} = \frac{a^{2} + 2ab + b^{2}}{a - b}\)
\(\frac{1}{q} = \frac{a + b}{a^{2} - 2ab + b^{2}}\)
\(\frac{1}{p} = \frac{(a + b)^{2}}{a - b}\)
\(\frac{1}{q} = \frac{a + b}{(a - b)^{2}}\)
\(\therefore p = \frac{a - b}{(a + b)^{2}}\)
\(\frac{p}{q} = p \times \frac{1}{q} = \frac{a - b}{(a + b)^{2}} \times \frac{a + b}{(a - b)^{2}}\)
= \(\frac{1}{(a + b)(a - b)}\)
= \(\frac{1}{a^{2} - b^{2}}\)
(2.6, 2.6)
(2.5, 2.6)
(2.6, 2.5)
(2.5, 2.1)
Correct answer is B
Arrange the numbers in order, 1.6, 2.1, 2.1| 2.4, 2.6| 2.6, 2.6, 3.7
n = median = \(\frac{2.4 + 2.6}{2}\)
= 2.5
m = mode = 2.6
∴ (n, m) = (2.5, 2.6)
35 years
40 years
42 years
54 years
Correct answer is C
Total age of the whole family = 21 x 14 = 294
Total age without the grandfather = 21 x 12 = 252
Age of grandfather = 294 - 252
= 42 years