Processing math: 60%
Home / Aptitude Tests / Mathematics / If 1p =...
If 1p = a2+2ab+b2ab and \...

If 1p = a2+2ab+b2ab and 1q = a+ba22ab+b2 Find pq

A.

a+bab

B.

1a2b2

C.

aba+b

D.

a2 - b2

Correct answer is B

1p=a2+2ab+b2ab

1q=a+ba22ab+b2

1p=(a+b)2ab

1q=a+b(ab)2

\frac{p}{q} = p \times \frac{1}{q} = \frac{a - b}{(a + b)^{2}} \times \frac{a + b}{(a - b)^{2}}

= \frac{1}{(a + b)(a - b)}

= \frac{1}{a^{2} - b^{2}}