How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Simplify \(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\)
\(\frac{a - b}{2a + b}\)
\(\frac{2a + 7b}{a - b}\)
\(\frac{2a - 7b}{a + b}\)
\(\frac{2a + 7b}{a + b}\)
Correct answer is D
\(\frac{4a^2 - 49b^2}{2a^2 - 5ab - 7b^2}\) = \(\frac{(2a)^2 - (7b)^2}{(a + b)(2a - 7b)}\)
= \(\frac{(2a + 7b)(2a - 7b)}{(a + b)(2a - 7b)}\)
= \(\frac{2a + 7b}{a + b}\)
Simplify \(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\)
\(\frac{x}{(x +2)(x - 3)}\)
\(\frac{2}{(x + 5)(x - 3)}\)
\(\frac{2}{(x + 1)(x + 3)}\)
\(\frac{2}{(x - 1)(x - 3)}\)
Correct answer is C
\(\frac{1}{x^2 + 5x + 6}\) + \(\frac{1}{x^2 + 3x + 2}\) = \(\frac{1}{(x + 1)(x + 2)}\) + \(\frac{1}{(x + 1)(x + 1)}\)
\(\frac{(x + 1)+ (x + 3)}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{x + 1 + x + 3}{(x + 1)(x + 2)(x + 3)}\)
\(\frac{2x + 4}{(x + 1)(x + 2)(x + 3)}\) = \(\frac{2(x + 2)}{(x + 1)(x + 2)(x + 3)}\)
= \(\frac{2}{(x + 1)(x + 3)}\)
The solution of the quadratic equation px2 + qx + b = 0 is
\(\sqrt{\frac{-b \pm b^2 - 4ac}{2a}}\)
\(\frac{-b \pm \sqrt{ p^2 - 4pb}}{2a}\)
\(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)
\(\frac{-q \pm \sqrt{ p^2 - 4bp}}{2p}\)
Correct answer is C
px2 + qx + b = 0
Using almighty formula
\(\frac{-b \pm \sqrt{ b^2 - 4ac}}{2a}\).........(i)
Where a = p, b = q and c = b
substitute for this value in equation (i)
= \(\frac{-q \pm \sqrt{ q^2 - 4bp}}{2p}\)
Given that 3x - 5y - 3 = 0, 2y - 6x + 5 = 0 the value of (x, y) is
(\(\frac{-1}{8}, \frac{19}{24}\))
8, \(\frac{24}{19}\)
-8, \(\frac{24}{19}\)
(\(\frac{19}{24}, \frac{-1}{8}\))
Correct answer is D
3x - 5y = 3, 2y - 6x = -5
-5y + 3x = 3........{i} x 2
2y - 6x = -5.........{ii} x 5
Substituting for x in equation (i)
-5y + 3(\(\frac{19}{24}\)) = 3
-5y + 3 x \(\frac{19}{24}\) = 3
-5y = \(\frac{3 - 19}{8}\)
-5 = \(\frac{24 - 19}{8}\)
= \(\frac{5}{8}\)
y = \(\frac{5}{8 \times 5}\)
y = \(\frac{-1}{8}\)
(x, y) = (\(\frac{19}{24}, \frac{-1}{8}\)
List the integral values of x which satisfy the inequality -1 < 5 - 2x \(\geq\) 7
-1, 0, 1, 2
0, 1, 2, 3
-0, 1, 2, 3
-1, 0, 2, 3
Correct answer is A
-1 < 5 - 2x \(\geq\) 7 = -1 < 5 -2x and 5 - 2x \(\leq\) 7
= 2x < 5 + 1 and 5 - 7 \(\leq\) 2x = x < 3 and -1 \(\leq\) x
Integral value of x are -1, 0, 1, 2