How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Solve the equation for the positive values of \(\theta\) less than 360o. 3 tan \(\theta\) + 2 = -1
135o or 315o
45o or 135o
315o or 180o
315v + 45o
360o or 315o
Correct answer is A
3 tan \(\theta\) + 2 = -1
3 tan \(\theta\) \(\frac{-3}{3}\) = -1
\(\theta\) = tan -1(-1)
\(\theta\) = 360o - 45o
= 315o
\(\theta\) = 180 - 45o = 135o
188.57cm2
1320cm2
188cm2
188.08cm2
10cm2
Correct answer is A
S = curved surface area = \(\pi\)rL
= \(\frac{22}{7}\) x 6 x 10
= 188.57cm2
Simplify the given expression \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)
\(\frac{1 - cos x}{sin x}\)
1 - cos x
sin x
1 + cos x
\(\frac{1 + cos x}{sin x}\)
Correct answer is A
\(\sqrt{\frac{1 - cos x}{1 + cos x}}\) = a
a2 = \(\frac{1 - cosx}{1 + cosx}\)
\(\frac{1 - cosx}{1 + cosx}\) = \(\frac{1 - cosx}{1 - cosx}\)
= \(\frac{(1 - cosx)^2}{cos^2 x}\)
a2 = \(\frac{(1 - cos x)^2}{sin^2 x}\)
a = \(\frac{1 - cos x}{sin x}\)
Solve the system of equation 2x + y = 32, 33y - x = 27
(3, 2)
(-3, 2)
(3, -2)
(-3, -2)
(2, 2)
Correct answer is A
2x + y = 32, 33y - x = 27
2x + y = 25
33y + x = 33
x + y = 5
\(\frac{3y - x = 3}{4y = 8}\)
y = 2
If it is given that 5x + 1 + 5x = 150, then the value of x is equal to
3
4
1
2
\(\frac{1}{2}\)
Correct answer is D
5x + 1 + 5x = 150
5(5x) + 5x = 150
6(5x) = 150
5x = \(\frac{150}{6}\)
= 25
= 52
= 2