How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If a function is defined by f(x + 1) = 3x2 - x + 4, Find f(0).
4
6
9
8
2
Correct answer is D
f(x + 1) = 3x2 - x + 4
f(0) = f(x + 1)
x + 1 = 0 ===> x = -1
f(0) = 3(-1)2 - (-1) + 4
f(0) = 3 + 1 + 4
= 8
c = 4 and d = -9
c = -4 and d = 9
c = -20 and d = -15
c = 20 and d = -15
c = -20 and d = 15
Correct answer is C
F(X) = x\(^3\) - 4x\(^2\) + cx + d
= (X + 1) Q(X) + R
x = -1, R = 0,f(-1) = -1\(^3\) - 4(-1)\(^2\) + c(-1) + d = 0
-1 - 4 - c + d = 0
d - c = 5................(i)
f(-2) = -2\(^3\) - 4(-2)\(^2\) + c(-2) + d = 1
= -8 - 16 - 2c + d
= 1
-8 - 16 - 2c + d = 1
-24 - 2c + d = 1
d - 2c = 1 + 24
d - 2c = 25.................(ii)
\(\frac{d - c = 5}{-c = 20}\) d - c = 5
c = -20
d - (-20) = 5
d + 20 = 5
d = 5 - 20
= -15
c = -20, d = -15
-1
x - 1
\(\frac{3(1 - 5x)}{x + 1}\)
1
3(1 - 5x)
Correct answer is D
\(\frac{5}{x + 1} - \frac{3}{1 - x} - \frac{7x - 1}{x^{2} - 1} = \frac{?}{x + 1}\)
\(\frac{5(x - 1) - 3(- (x + 1)) - 7x - 1}{x^{2} - 1}\)
= \(\frac{5x - 5 + 3x + 3 - 7x - 1}{x^{2} - 1}\)
= \(\frac{x - 1}{x^{2} - 1}\)
= \(\frac{x - 1}{(x - 1)(x + 1)}\)
= \(\frac{1}{x + 1}\).
The numerator = 1.
500
2 log10 5
10
25
log105 x 10100
Correct answer is E
102 + log105 = log10 10100 + log105
= log105 x 10100
1.03
2.31
3.69
10.5
25
Correct answer is B
log 10.5 = log \(\frac{21}{2}\)
= log 21 - log 2
= log(3 x 7) - log 2
= log 3 + log 7 - log 2
= 1.10 + 1.90 - 0.69
= 3 - 0.69
= 2.31