How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Find the 19th term of the A.P. \(\frac{5}{6}\), \(\frac{8}{6}\), \(\frac{11}{6}\).................
7\(\frac{1}{2}\)
9
9\(\frac{1}{2}\)
9\(\frac{5}{6}\)
10
Correct answer is D
first term (a) = \(\frac{5}{6}\)
common difference = \(\frac{8}{6}\) - \(\frac{5}{6}\) → \(\frac{3}{6}\) or \(\frac{1}{2}\)
A.P formula → T\(_n\) = a + (n - 1)d
T\(_n\) = \(\frac{5}{6}\) + (19 - 1)\(\frac{1}{2}\)
T\(_n\) = \(\frac{5}{6}\) + 9
→ 9\(\frac{5}{6}\)
11.60%
7.60%
15%
17.65%
Correct answer is C
Using these:
Loss = C.p - S.p
: Percentage Loss = ( Loss X 100) ÷ C.p
=15 %
If s = \(\sqrt{(\frac{a^2}{x^2} - \frac{b^2}{y^2})}\)what does y equal?
\(\sqrt{\frac{(b^2 - a^2)}{(s^2 - x^2)}}\)
\(\sqrt{\frac{(b^2 - a^2)}{(s^2 \times 2)}}\)
\(\sqrt{\frac{x^2 - a^2 - b^2}{s}}\)
\(\frac{x^2 - a^2 - b^2}{s}\)
\(\sqrt{\frac{(b^2 x^2)}{(a^2 - s^2 x^2)}}\)
Correct answer is E
s = \(\sqrt{(\frac{a^2}{x^2} - \frac{b^2}{y^2})}\)
s\(^2\) = \(\frac{a^2}{x^2} - \frac{b^2}{y^2}\)
\(\frac{b^2}{y^2}\) = \(\frac{a^2}{x^2}\) - s\(^2\)
\(\frac{b^2}{y^2}\) = \(\frac{a^2 - s^2 x^2}{x^2}\)
\(\frac{1}{y^2}\) = \((\frac{a^2 - s^2 x^2}{x^2}) \times \frac{1}{b^2}\)
\(\frac{1}{y^2}\) = \(\frac{a^2 - s^2 x^2}{b^2 x^2}\)
\(\therefore\) y\(^2\) = \(\frac{b^2 x^2}{a^2 - s^2 x^2}\)
y = \(\sqrt{\frac{b^2 x^2}{a^2 - s^2 x^2}}\)
Factorize \( a^2 − b^2 − 4a + 4 \)
(a + b)(a − b)
(a − 2 + b)(a - 2- b)
(a + 1)(a − 2 + b)
(a + b) 2
Correct answer is B
The trinomial = \( a^2 − 4a + 4 \\
a^2 − b^2− 4a + 4 = (a^2 − 4a + 4) − b^2 \\
(a^2 − 2a − 2a + 4) − b^2 \\
a(a − 2)− 2(a − 2)] − b^2 \\
(a − 2)2 − b^2 \\
(a − 2 + b)(a − 2 − b )\)
3(2 + √5)
2(3 + √5)
5(2 + √3)
3 √2 + 1
Correct answer is C
5÷ (2 − √3)
Using conjugate surds
[5 ÷ (2 − √3)]×(2 + √3) ÷ (2 + √3)]
[5(2+√3)÷((2− √3))2]
[5(2 +√3) ÷ (2)2− (√3)2]
[5(2 +√3) ÷(4− 3)]
= 5(2 + √3)