\(\sqrt{\frac{(b^2 - a^2)}{(s^2 - x^2)}}\)
\(\sqrt{\frac{(b^2 - a^2)}{(s^2 \times 2)}}\)
\(\sqrt{\frac{x^2 - a^2 - b^2}{s}}\)
\(\frac{x^2 - a^2 - b^2}{s}\)
\(\sqrt{\frac{(b^2 x^2)}{(a^2 - s^2 x^2)}}\)
Correct answer is E
s = \(\sqrt{(\frac{a^2}{x^2} - \frac{b^2}{y^2})}\)
s\(^2\) = \(\frac{a^2}{x^2} - \frac{b^2}{y^2}\)
\(\frac{b^2}{y^2}\) = \(\frac{a^2}{x^2}\) - s\(^2\)
\(\frac{b^2}{y^2}\) = \(\frac{a^2 - s^2 x^2}{x^2}\)
\(\frac{1}{y^2}\) = \((\frac{a^2 - s^2 x^2}{x^2}) \times \frac{1}{b^2}\)
\(\frac{1}{y^2}\) = \(\frac{a^2 - s^2 x^2}{b^2 x^2}\)
\(\therefore\) y\(^2\) = \(\frac{b^2 x^2}{a^2 - s^2 x^2}\)
y = \(\sqrt{\frac{b^2 x^2}{a^2 - s^2 x^2}}\)
If \(\cos^2 \theta + \frac{1}{8} = \sin^2 \theta\), find \(\tan \theta\)....
Evaluate \(5\frac{2}{5}\times \left(\frac{2}{3}\right)^2\div\left(1\frac{1}{2}\right)^{-1}\)...
For which of the following exterior angles is a regular polygon possible? i. 35° ii. 18°...
If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r....
In the diagram, RT is a tangent to the circle at R, < PQR = 70\(^o\), < QRT = 52\(^o\), < Q...
If the volume of a cube is (8 x 103)cm\(^3\), what is the surface area the cube?...
In the diagram, PQRS is a parallelogram. Find the value of < SQR ...