Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

746.

Evaluate 1 - (\(\frac{1}{5}\) x \(\frac{2}{3}\)) + ( 5 + \(\frac{2}{3}\))

A.

4

B.

3

C.

2\(\frac{2}{3}\)

D.

\(\frac{98}{15}\)

Correct answer is D

No explanation has been provided for this answer.

747.

If temperature t is directly proportional to heat h, and when t = 20oC, h = 50 J, find t when h = 60J

A.

24oC

B.

20oC

C.

34oC

D.

30oC

Correct answer is A

t ∝ h, t = 20, h

t = ? h = 60

t = kh where k is constant

20 = 50k

k = \(\frac{20}{50}\)

k = \(\frac{2}{5}\)

when h = 60, t = ?

t = \(\frac{2}{5}\) × 60

t = 24oC

748.

If y = x Sin x, find \(\frac{dy}{dx}\) when x = \(\frac{\pi}{2}\)

A.

\(\frac{- \pi}{2}\)

B.

-1

C.

1

D.

\(\frac{ \pi}{2}\)

Correct answer is C

y = xsinx

\(\frac{dy}{dx}\) = \(1 \sin x + x \cos x\)

= \(\sin x + x \cos x\)

At x = \(\frac{\pi}{2}\)

= sin\(\frac{\pi}{2}\) + \(\frac{\pi}{2} \cos {\frac{\pi}{2}}\)

= 1 + \(\frac{\pi}{2}\) × 0

= 1

749.

Evaluate (\(\sin\)45º + \(\sin\)30º ) in surd form

A.

\(\frac{\sqrt{3}}{2\sqrt{2}}\)

B.

√3 − \(\frac{1}{2}\)

C.

\(\frac{1}{2}\)√2

D.

1 + \(\frac{\sqrt{2}}{2}\)

Correct answer is D

hypotenuse
sin = \(\frac{1}{2}\)

\(\sin45 = \frac{1}{\sqrt{2}}\)

= \(\frac{2}{2}\)

∴ (sin45 + sin30)

= \(\frac{1}{\sqrt{2}} + \frac{1}{2}\)

= \(\frac{\sqrt{2}}{2}\) + \(\frac{1}{2}\)

= \(\frac{\sqrt{2} + 1}{2}\)

= \(\frac{1 + \sqrt{2}}{2}\)

750.

If two graphs Y = px2 + q and y = 2x2 − 1 intersect at x =2, find the value of p in terms of q

A.

q − \(\frac{8}{7}\)

B.

7 − \(\frac{q}{4}\)

C.

8 − \(\frac{q}{2}\)

D.

7 + \(\frac{q}{8}\)

Correct answer is B

Y = Px2 + q

Y = 2x2 - 1

Px2 + q = 2x2 - 1

Px2 = 2x2 - 1 - q

p = \(\frac{2x^2 - 1 - q}{x^2}\)

at x = 2

P = \(\frac{2(2)^2 - 1 - q}{2^2}\)

= \(\frac{2(4) - 1 -q}{4}\)

= \(\frac{8 - 1 - q}{4}\)

P = \(\frac{7 - q}{4}\)