\(\frac{\sqrt{3}}{2\sqrt{2}}\)
√3 − \(\frac{1}{2}\)
\(\frac{1}{2}\)√2
1 + \(\frac{\sqrt{2}}{2}\)
Correct answer is D
hypotenuse
sin = \(\frac{1}{2}\)
\(\sin45 = \frac{1}{\sqrt{2}}\)
= \(\frac{2}{2}\)
∴ (sin45 + sin30)
= \(\frac{1}{\sqrt{2}} + \frac{1}{2}\)
= \(\frac{\sqrt{2}}{2}\) + \(\frac{1}{2}\)
= \(\frac{\sqrt{2} + 1}{2}\)
= \(\frac{1 + \sqrt{2}}{2}\)