Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

61.

Find the volume of a cone which has a base radius of 5 cm and slant height of 13 cm.

A.

\(300\pi\) cm\(^3\)

B.

\(325\pi\) cm\(^3\)

C.

\(\frac{325}{3}\pi\) cm\(^3\)

D.

\(100\pi\) cm\(^3\)

Correct answer is D

Volume of a cone = \(\frac{1}{3}\pi r^2 h\)

r = 5 cm

l = 13 cm

Using Pythagoras theorem

⇒ \(13^2 = 5^2 + h^2\)

⇒ \(169 = 25 + h^2\)

⇒ \(169 - 25 = h^2\)

⇒ \(h^2 = 144\)

⇒ \(h = \sqrt144 = 12 cm\)

∴ Volume of the cone = \(\frac{1}{3} \times\pi\times 5^2 x 12 = 100\pi\) cm\(^3\)

62.

Which inequality describes the graph above?

A.

\(4y + 5x ≥ 20\)

B.

\(5y + 4x ≤ 20\)

C.

\(4y + 5x ≤ 20\)

D.

\(5y + 4x ≥ 20\)

Correct answer is B

First, we find the equation of the boundary line using the two intercepts.The slope is

m = \(\frac{4 - 0}{0 - 5} = {4}{5}\)

The y-intercept is 4

The slope-intercept form of the equation is therefore

y = -\(\frac{4}{5} x + 4\)

\(\implies y + \frac{4}{5} x = 4\)

Multiply both sides by \(\frac{5}{4}\)

\(\implies\frac{5}{4}(y +\frac{4}{5} x) = 4\times\frac{5}{4}\)

\(\implies\frac{5}{4} y + x = 5\)

Multiply both sides by 4

⇒ \(5y + 4x = 20\)

The inequality is therefore either \(5y + 4x ≤ 20\) or \(5y + 4x ≥ 20.\)

Using the test point (0, 0) -The origin

⇒ 5(0) + 4(0) ≤ 20

⇒ 0 ≤ 20 (True)

∴ The inequality is \(5y + 4x ≤ 20\)

63.

Find the value of x in the diagram above

A.

10 units

B.

15 units

C.

5 units

D.

20 units

Correct answer is A

Intersecting Chords Theorem states that If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal.

⇒ AE * EB = CE * ED

⇒ 6 * \(x\) = 4 * (\(x\) + 5)

⇒ 6\(x\) = 4\(x\) + 20

⇒ 6\(x\) - 4\(x\) = 20

⇒ 2\(x\) = 20

∴ \(x = \frac{20}{2}\) = 10 units

64.

Calculate the area of the composite figure above.

A.

6048 m\(^2\)

B.

3969 m\(^2\)

C.

4628 m\(^2\)

D.

5834 m\(^2\)

Correct answer is B

Area of the composite figure = Area of semi circle + Area of rectangle + Area of triangle

Area of semi circle = \(\frac{1}{2}\pi r^2 = \frac{1}{2}\times\pi\times\frac{d^2}{4} = \frac{1}{2}\times\frac{22}{7}\times\frac{42^2}{4} = 693 m^2\)

Area of rectangle = l x b = 42 x 60  =2520 m\(^2\)

Area of triangle = \(\frac{1}{2}\times b \times h = \frac{1}{2}\times 36 \times 42 = 756 m^2\)

∴ Area of the composite figure = 693 + 2520 + 756 = 3969 m\(^2\)

65.

Solve the logarithmic equation: \(log_2 (6 - x) = 3 - log_2 x\)

A.

\(x\) = 4 or 2

B.

\(x\) = -4 or -2

C.

\(x\) = -4 or 2

D.

\(x\) = 4 or -2

Correct answer is A

\(log_2 (6 - x) = 3 - log_2 x\)

⇒ \(log_2 (6 - x) = 3 log_2 2 - log_2 x\) (since \(log_2\) 2 = 1)

⇒ \(log_2 (6 - x) = log_2 2^3 - log_2 x\) \((a log\) c = \(log\) c\(^a)\)

⇒ \(log_2 (6 - x) = log_2 8 - log_2 x\)

⇒\(log_2 (6 - x) = log_2 \frac{8}{x}\) (\(log\) a - \(log\) b = \(log \frac{a}{b})\)

⇒ \(6 - x = \frac{8}{x}\)

⇒ \(x (6 - x) = 8\)

⇒ \(6x - x^2 = 8\)

⇒ \(x^2 - 6x + 8 = 0\)

⇒ \(x^2 - 4x - 2x + 8 = 0\)

⇒ \(x (x - 4) - 2(x - 4) = 0\)

⇒ \((x - 4)(x - 2) = 0\)

⇒ \(x - 4 = 0 or x - 2 = 0\)

∴ x = 4 or 2