Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

636.

A curve is such that when y = 0, x = -2 or x = 3. Find the equation of the curve.

A.

y = \(x^2 - 5x - 6\)

B.

y = \(x^2 + 5x - 6\)

C.

y = \(x^2 + x - 6\)

D.

y = \(x^2 - x - 6\)

Correct answer is A

Since the curve cuts the x-axis at x = -2 and x = 3,

(x + 2)(x - 3) = 0

\(x^2 - 3x + 2x - 6\) = 0

\(x^2 - x - 6\) = 0

Hence, the equation of the curve is

y = \(x^2 - x - 6\)

637.

Simplify; \(\frac{2 - 18m^2}{1 + 3m}\)

A.

\(2 (1 + 3m)\)

B.

\(2 (1 + 3m^2)\)

C.

\(2(1 - 3m)\)

D.

\(2(1 - 3m^2)\)

Correct answer is C

\(\frac{2 - 18m^2}{1 + 3m}\) = \(\frac{2(1 - 9)m^2}{1 + 3m}\)

= \(\frac{2(1 + 3m)(1 - 3m)}{1 + 3m}\)

= \(2(1 - 3m)\)

638.

If x : y : z = 3 : 3 : 4, evaluate \(\frac{9x + 3y}{6z - 2y}\)

A.

1\(\frac{1}{2}\)

B.

2

C.

2\(\frac{1}{2}\)

D.

3

Correct answer is A

If x : y : z = 3 : 3 : 4, evaluate \(\frac{9x + 3y}{6x - 2y}\)

\(\frac{x}{y}\) = \(\frac{2}{3}\) and \(\frac{y}{z}\) = \(\frac{3}{4}\)

Thus; x = \(\frac{2}{3}T_1\) and z = \(\frac{3}{5}T_1\)

y = \(\frac{3}{7}T_2\) and z =  \(\frac{4}{7}T_2\)

Using y = y

\(\frac{3}{5}T_1\) = \(\frac{3}{7}T_2\); \(\frac{T_1}{T_2}\) = \(\frac{3}{7}\) x \(\frac{5}{3}\)

\(\frac{T_1}{T_2}\)  = \(\frac{15}{21}\)

\(T_1\) = 15 and \(T_2\) = 21

Therefore;

x = \(\frac{2}{5}\) x 15 = 6

y = \(\frac{3}{5}\) x 15 = 9

y = \(\frac{3}{7}\)  x 21 = 9 (again)

z = \(\frac{4}{7}\) x 21 = 12

Hence;

\(\frac{9x + 3y}{6z - 2y}\) = \(\frac{9(6) + 3(9)}{6(12) - 2(9)}\)

\(\frac{54 + 27}{72 - 18}\) = \(\frac{81}{54}\) = \(\frac{3}{2}\)

= 1\(\frac{1}{2}\)

639.

If y + 2x = 4 and y - 3x = -1, find the value of (x + y)

A.

3

B.

2

C.

1

D.

-1

Correct answer is A

y + 2x = 4 .....(1)

y - 3x = -1 ......(2)

Subtract (2) from (1)

2x - (-3x) = 4 - (-1)

2x + 3x = 4 + 1

5x = 5

X = \(\frac{5}{5}\)

= 1

Substitute 1 for x in (1);

y + 2(1) = 4

y + 2 = 4

y = 4 - 2 = 2

Hence, (x + y) = (1 + 2)

= 3

640.

If F = \(\frac{9}{5}\)C + 32, find C when F = 98.6

A.

30

B.

37

C.

39

D.

41

Correct answer is B

F = \(\frac{9}{5}\)C + 32

When F = 98.6

98.6 = \(\frac{9}{5}\)C + 32

98.6 - 32 = \(\frac{9}{5}\)C

66.6= \(\frac{9}{5}\)C

66.6 x 5 = 9C

C = \(\frac{66.6 \times 5}{9}\)

= 37