\(\frac{x + 3}{1 - x^2}\)
\(\frac{3 - x}{(1 - x)^2}\)
\(\frac{3 - x}{1 + x^2}\)
\(\frac{3 - x}{(1 + x)^2}\)
\(\frac{3 - x}{1 - x^2}\)
Correct answer is E
\(\frac{1}{1 - x} + \frac{2}{1 + x}\)
= \(\frac{(1 + x) + 2(1 - x)}{(1 - x)(1 + x)}\)
= \(\frac{1 + x + 2 - 2x}{1 - x^2}\)
= \(\frac{3 - x}{1 - x^2}\)
Factorize the expression 2s\(^2\) - 3st - 2t\(^2\)....
Determine the value of x in the figure ...
In the diagram above, RST is a tangent to circle VSU center O ∠SVU = 50° and UV is a di...
If \((\frac{2}{3})^{m} (\frac{3}{4})^{n} = \frac{256}{729}\), find the values of m and n....
In the diagram, PQRW is a circle. Line P, V and QR are produced to meet at M, where ∠WMR = 30o a...
If \(\frac {3 - \sqrt 3}{2 + \sqrt 3} = a + b\sqrt 3\), what are the values a and b?...
Approximate 0.0033780 to 3 significant figures ...
The sum of four numbers is 1214\(_5\). What is the average expressed in base five? ...