If (g(y)) = \(\frac{y - 3}{11}\) + \(\frac{11}{y^2 - 9}\). what is g(y + 3)?

A.

\(\frac{y}{11} + \frac{11}{y(y + 6)}\)

B.

\(\frac{y}{11} + \frac{11}{y(y + 3)}\)

C.

\(\frac{y + 30}{11} + \frac{11}{y(y + 3)}\)

D.

\(\frac{y + 3}{11} + \frac{11}{y(y - 6)}\)

Correct answer is A

\(g(y) = \frac{y - 3}{11} + \frac{11}{y^{2} - 9}\)

\(\therefore g(y + 3) = \frac{(y + 3) - 3}{11} + \frac{11}{(y + 3)^{2} - 9}\)

\(g(y + 3) = \frac{y}{11} + \frac{11}{y^{2} + 6y + 9 - 9}\)

\(g(y + 3) = \frac{y}{11} + \frac{11}{y^{2} + 6y}\)

= \(\frac{y}{11} + \frac{11}{y(y + 6)}\)