Find the derivative of \(y = \sin^{2} (5x)\) with respect...
Find the derivative of \(y = \sin^{2} (5x)\) with respect to x.
10 sin 5x cos 5x
5 sin5x cos 5x
2 sin 5x cos 5x
15 sin 5x cos 5x
Correct answer is A
\(y = \sin^{2} (5x)\)
Let u = sin 5x
\(\frac{\mathrm d u}{\mathrm d x} = 5 \cos 5x\)
\(\therefore y = u^{2}\)
\(\frac{\mathrm d y}{\mathrm d u} = 2u\)
\(\frac{\mathrm d y}{\mathrm d x} = 2u . 5 \cos 5x\)
= \(10u \cos 5x\)
= \(10 \sin 5x \cos 5x\)
Simplify (0.09)2 and give your answer correct to 4 significant figures...
Each of the base angles of a isosceles triangle is 58° and the verticles of the triangle li...
Find p, q for which \(\begin{pmatrix} 2p & 8 \\ 3 & -5q \end{pmatrix}\)\(\begin{pmatrix} 1 \...
\(\begin{array}{c|c} Values & 0 & 1 & 2 & 3 & 4 \\ \hline Frequency & 1 &...
Make p the subject if formula y = a + p/a - p...
Calculate the standard deviation of the following data: 7, 8, 9, 10, 11, 12, 13. ...