Express \(\frac{1}{x^{3}-1}\) in partial fractions
...Express \(\frac{1}{x^{3}-1}\) in partial fractions
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x + 2)}{x^{2} + x + 1})\)
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{x - 2}{x^{2} + x + 1})\)
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x - 2)}{x^{2} + x + 1})\)
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x - 1)}{x^{2} - x - 1})\)
Correct answer is A
\(\frac{1}{x^{3} - 1}\)
\(x^{3} - 1 = (x - 1)(x^{2} + x + 1)\)
\(\frac{1}{x^{3} - 1} = \frac{A}{x - 1} + \frac{Bx + C}{x^{2} + x + 1}\)
\(\frac{1}{x^{3} - 1} = \frac{A(x^{2} + x + 1) + (Bx + C)(x - 1)}{x^{3} - 1}\)
Comparing the two sides of the equation,
\(A + B = 0 ... (1)\)
\(A - B + C = 0 ... (2)\)
\(A - C = 1 ... (3)\)
From (3), \(C = A - 1\), putting that in (2),
\(A - B = -C \implies A - B = 1 - A\)
\(2A - B = 1 ... (4)\)
(1) + (4): \(3A = 1 \implies A = \frac{1}{3}\)
\(A = -B \implies B = -\frac{1}{3}\)\(C = A - 1 \implies C = \frac{1}{3} - 1 = -\frac{2}{3}\)
= \(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x + 2)}{x^{2} + x + 1})\)
The number 25 when converted from the tens and units base to the binary base (base two) is one ...
In the diagram, |QR| = 5cm, PQR = 60<sup>o</sup> and PSR = 45<sup>o</sup>. F...
Simplify \(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{3 - 2}{\sqrt{3} + \sqrt{2}}\)...
If f(x - 4) = x2 + 2x + 3, Find, f(2)...
If p = [\(\frac{Q(R - T)}{15}\)]\(^ \frac{1}{3}\), make T the subject of the relation...