-7.0
-8.0
-9.6
9
Correct answer is B
f(x) = 4x\(^3\) + px\(^2\) + 7x - 23
If f(x) is divided by (2x -5), the remainder is f(\(\frac{5}{2}\))
f\(\frac{5}{2}\) = 4\(\frac{5}{2}\)\(^3\) + p\(\frac{5}{2}\)\(^2\) + 7\(\frac{5}{2}\) - 23
Hence;
= \(\frac{125}{8}\) + \(\frac{25}{4}\) p + \(\frac{35}{2}\) - 23
28 = 250 + 250p + 70 - 92
25p = -200; p = -8.0
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...
Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x)....
Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\)....
Find the value of x for which 6\(\sqrt{4x^2 + 1}\) = 13x, where x > 0...
Find the range of values of x for which \(2x^{2} + 7x - 15 > 0\)....
If the polynomial \(f(x) = 3x^{3} - 2x^{2} + 7x + 5\) is divided by (x - 1), find the remainder....