The velocity, V of a gas is related to its mass, M by (k = proportionality constant)
V = \(\frac{k}{M}\)
V = \(\frac{k}{M^{\frac{1}{2}}}\)
V = \(kM^2\)
V = \((\frac{k}{M})^{\frac{1}{2}}\)
Correct answer is B
Recall:
V = \(\sqrt{\frac{3RT}{M}}\)
\(\therefore V \propto \frac{1}{\sqrt{M}}\)
\(V = \frac{k}{\sqrt{M}}\)
V = \(\frac{k}{M^{\frac{1}{2}}}\)