x = \(\frac {(-9c - 5dy)}{4y - 3}\)
x = \(\frac {-9c + 5dy}{4y - 3}\)
x = \(\frac {(-9c + 5dy)}{4y - 3}\)
x = \(\frac {-(9c + 5dy)}{4y - 3}\)
Correct answer is D
y = \(\frac {3x - 9c}{4x + 5d}\)
\(\frac {y}{1} = \frac {3x - 9c}{4x + 5d}\)
= y(4x + 5d) = 3x - 9c
= 4xy + 5dy = 3x - 9c
= 4xy - 3x = -9c - 5dy
= (4y - 3)x = -9c - 5dy
= x = \(\frac {-9c - 5dy}{4y - 3}\)
x = \(\frac {-(9c + 5dy)}{4y - 3}\)
In the diagram, PR||SV||WY|, TX||QY|, < PQT = 48o and < TXW = 60o.Find < TQU....
Using the histogram, estimate the mode of distribution ...
Factorize the expression: am + bn - an - bm ...
If 3\(^y\) = 243, find the value of y....
Simplify 3\(\sqrt{45} - 12\sqrt{5} + 16\sqrt{20}\), leaving your answer in surd form....