\(\overline{XY}\) is a line segments with the coordinates X (- 8,- 12) and Y(p,q). if the midpoint of \(\overline{XY}\)  is (-4,-2) find the coordinates of Y.

A.

(-6,-2)

B.

(0,8)

C.

(4,10)

D.

(0,4)

Correct answer is B

The formula for midpoint = \(\frac{x_1 + x_2}{2}\), \(\frac{y_1 + y_2}{2}\)

(-4,-2) = (x,y)

x = \(\frac{x_1 + x_2}{2}\)

-4 = \(\frac{-8 + p}{2}\)

-4 * 2 = -8 + p

-8 + 8 = p

: p = 0

y = \(\frac{y_1 + y_2}{2}\)

-2 = \(\frac{-12 + q}{2}\)

-2 * 2 = -12 + q

-4 + 12 = q

: q = 8