In the diagram, \(\overline{MP}\) is a tangent to the circle NQR, ∠NQR, ∠PNQ = 64 and | \(\overline{RQ}\) | = | \(\overline{RN}\) |. Find the angle market t. 

In the diagram, \(\overline{MP}\) is a tangent to the circle NQR, ∠NQR, ∠PNQ = 64 and | \(\overline{RQ}\) | = | \(\overline{RN}\) |. Find the angle market t. 

A.

130°

B.

115°

C.

58°

D.

68°

Correct answer is C

Alternate segments are equal : R° = 64°

An isosceles triangle has two angles ( Q° & N° ) equal as A°

R° + A° + A° = 180°

2A°= 180 - 64

2A° = 116°

A = \(\frac{116}{2}\)

A = 58.

: Q° = 58, N° = 58 and T° = 58 

As Alternate segments are equal: T = Q