If w varies inversely as \(\frac{uv}{u + v}\) and w = 8 when

u = 2 and v = 6, find a relationship between u, v, w.

A.

uvw = 16(u + v)

B.

16uv = 3w(u + v)

C.

uvw = 12(u + v)

D.

12uvw = u + v

Correct answer is C

W \(\alpha\) \(\frac{\frac{1}{uv}}{u + v}\)

∴ w = \(\frac{\frac{k}{uv}}{u + v}\)

= \(\frac{k(u + v)}{uv}\)

w = \(\frac{k(u + v)}{uv}\)

w = 8, u = 2 and v = 6

8 = \(\frac{k(2 + 6)}{2(6)}\)

= \(\frac{k(8)}{12}\)

k = 12

i.e 12 ( u + v) = uwv