Find the value of p if the line which passes through (-1, -p) and (-2,2) is parallel to the line 2y+8x-17=0?

A.

\(\frac{-2}{7}\)

B.

\(\frac{7}{6}\)

C.

\(\frac{-6}{7}\)

D.

2

Correct answer is D

Line:  2y+8x-17=0 

recall y = mx + c

2y = -8x + 17

y = -4x  + \(\frac{17}{2}\)

Slope m\(_1\) = 4

parallel lines: m\(_1\). m\(_2\) = -4

where Slope ( -4) = \(\frac{y_2 - y_1}{x_2 - x_1}\) at points (-1, -p) and (-2,2)

-4( \(x_2 - x_1\) ) = \(y_2 - y_1\) 

-4 ( -2 - -1) = 2 - -p

p = 4 - 2 = 2