Make m the subject of the relation k = \(\frac{m - y}{m + 1}\)

A.

m = \(\frac{y + k^2}{k^2 + 1}\)

B.

m = \(\frac{y + k^2}{1 - k^2}\)

C.

m = \(\frac{y - k^2}{k^2 + 1}\)

D.

m = \(\frac{y - k^2}{1 - k^2}\)

Correct answer is B

k = \(\frac{m - y}{m + 1}\)

k\(^2\) = \(\frac{m  - y}{m + 1}\)

k\(^2\)m + k\(^2\) = m - y 

k\(^2\) + y = m - k\(^2\)m

\(\frac{k^2 + y}{1 - k^2}\) = m\(\frac{(1 - k^2)}{1 - k^2}\)

m = \(\frac{y + k^2}{1 - k^2}\)