m = \(\frac{y + k^2}{k^2 + 1}\)
m = \(\frac{y + k^2}{1 - k^2}\)
m = \(\frac{y - k^2}{k^2 + 1}\)
m = \(\frac{y - k^2}{1 - k^2}\)
Correct answer is B
k = \(\frac{m - y}{m + 1}\)
k\(^2\) = \(\frac{m - y}{m + 1}\)
k\(^2\)m + k\(^2\) = m - y
k\(^2\) + y = m - k\(^2\)m
\(\frac{k^2 + y}{1 - k^2}\) = m\(\frac{(1 - k^2)}{1 - k^2}\)
m = \(\frac{y + k^2}{1 - k^2}\)
Simplify \(\frac{x - 7}{x^2 - 9}\) x \(\frac{x^2 - 3x}{x^2 - 49}\)...
If n(P) = 20 and n(Q) = 30 and n(PuQ) = 40, find the value n(PnQ) ...
Find the derivatives of the function y = 2x\(^2\)(2x - 1) at the point x = -1? ...
The value of (0.03)3 - (0.02)3 is ...
If N varies directly as M and N = 8 when M = 20 find M when N = 7 ...
Evaluate: \(\frac{0.42 \div 2.5}{0.5 \times 2.95}\), leaving the answer in the standard form....