A circular arc subtends angle 150° at the centre ...
A circular arc subtends angle 150° at the centre of a circle of radius 12cm. Calculate the area of the sector of the arc.
30\(\pi\) cm\(^2\)
60\(\pi\) cm\(^2\)
120\(\pi\) cm\(^2\)
150\(\pi\) cm\(^2\)
Correct answer is B
Area of sector = \(\frac{\theta}{360°} \times \pi r^{2}\)
= \(\frac{150}{360} \times \pi \times 12^{2}\)
= 60\(\pi\) cm\(^{2}\)
Express \((0.0439 \div 3.62)\) as a fraction....
If (25)x - 1 = 64(\(\frac{5}{2}\))6, then x has the value...
Rationalize \(\frac{2\sqrt{3} + \sqrt{5}}{\sqrt{5} - \sqrt{3}}\) ...
Solve \(\frac{1}{x + 1}\) - \(\frac{1}{x + 3}\) = \(\frac{1}{4}\)...
>What are the factors of 2x\(^2\) - xy - 3y\(^2\) ?...
Calculate the total surface area of a cone of height 12cm and base radius 5cm. [Take π = 22/7] ...