Home / Aptitude Tests / Mathematics / The surface area of ...
The surface area of a sphere is \(\frac{792}{7} cm^2\). Find...

The surface area of a sphere is \(\frac{792}{7} cm^2\). Find, correct to the nearest whole number, its volume. [Take \(\pi = \frac{22}{7}\)]

A.

113\(cm^3\)

B.

131\(cm^3\)

C.

311\(cm^3\)

D.

414\(cm^3\)

Correct answer is A

Surface area of a sphere = \(4 \pi r^2\) \(4 \pi r^2\) = \(\frac{792}{7}cm^2\) 4 x \(\frac{22}{7}\) x \(r^2\) = \(\frac{792}{7}\) \(r^2\) = \(\frac{792}{7}\) x \(\frac{7}{4 \times 22}\) = 9 r = \(\sqrt{9}\) = 3cm Hence, volume of sphere = \(\frac{4}{3} \pi r^3\) = \(\frac{4}{3} \times \frac{22}{7} \times 3 \times 3 \times 3 \) = \(\frac{4 \times 22 \times 9}{7}\) \(\approx\) = 113.143 = 113\(cm^3\) (to the nearest whole number)